

LOGISTICS & MARITIME FORUM European trends and regional perspectives

15-16 February 2017, Piacenza Expo

The impact of sulphur regulations on RoRo shipping in Northern Europe

Harilaos N. Psaraftis Professor Technical University of Denmark

.....

DTU

LOGISTICS & MARITIME FORUM European trends and regional perspectives 15-16 February 2017, Piacenza Expo

The RoRoSECA project

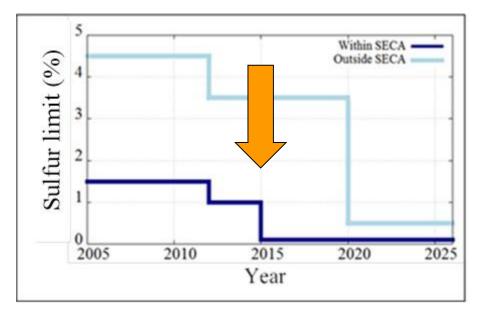
- 2 year project
- Funded by the Danish Maritime Fund (DMF)
- Industry partner: DFDS

Project full title:

- Mitigating and reversing the side-effects of environmental legislation on Ro-Ro shipping in Northern Europe
- Main objective: identify and assess possible technical, operational, regulatory and financial measures for the mitigation and reversal of the negative repercussions of environmental legislation to the market shares of Ro-Ro shipping in Northern Europe.
- Duration: 2 years (15/6/2015-14/6/2017)

The problem

- Higher fuel prices due to 0.1% sulphur content as of 1 Jan. 2015 risk making Ro-Ro shipping less competitive vis a vis land based modes.
- Possible modal shifts.
- Risk of route closure.
- Some operators have shut down some of their routes.
- Q: What can be done to alleviate problem?



The problem ii


- The fact that fuel prices have dropped precipitously since the summer of 2014 has somehow alleviated the repercussions of the new regulations.
- This has also masked the extent of the problem.
- However, the risk of route closure still exists, particularly if fuel prices rise again in the future.
- \rightarrow Need to be on the alert.

Background: Marpol Annex VI



				Year
Areas	2005-2012	2012-2015	2015-2020	2020 on
Within SECA	1.5	1	0.1	0.1
Outside SECA	4.5	3.5	3.5	0.5
6				15/2/2017

Effects to Ro-Ro operators

- Ship operators can either use low-sulphur fuel, or retrofit vessels with scrubber systems
- MGO is more expensive, while scrubbers increase overall fuel consumption, and require significant capital costs
- Increased operating costs could lead to changes in
 - vessel deployment
 - frequency of service
 - sailing speed
 - existence of certain routes
- Some of the additional costs will be passed over to clients through the Bunker Adjustment Factor (BAF fuel surcharges)

Before 2015: many studies/papers

- Kalli et al (2009)
- Ljungström et al (2009)
- Stavrakakis et al (2009)
- Hader at al (2010)
- ECSA: Notteboom et al (2010)
- EC: Bosch et al (2009), Kehoe et al (2010), Delhaye et al (2010)
- ECSA & ICS: Grebot et al (2010)
- EMSA (2010)
- etc
- Special issue of Tr. Res. Part D on ECAs (2014)

Transportation Research Part D xxx (2014) xxx-xxx

Editorial

Emission control areas and their impact on maritime transport

Kevin Cullinane^{a,*}, Rickard Bergqvist^{b,1}

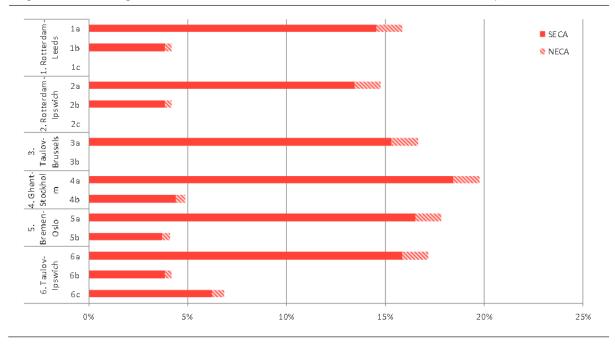
^a Transport Research Institute, Edinburgh Napier University, Merchiston Campus, EH10 5DT Edinburgh, United Kingdom

^b Logistics and Transport Research Group, Department of Business Administration, School of Business, Economics and Law at University of Gothenburg, P.O. Box 610, SE 405 30 Göteborg, Sweden

The possible designation of the Mediterranean Sea as a SECA: A case study

George P. Panagakos^{a,1}, Eirini V. Stamatopoulou^{a,2}, Harilaos N. Psaraftis^{b,*}

^a Laboratory for Maritime Transport, National Technical University of Athens, 9, Iroon Politechniou Str., Zografos, Greece ^b Department of Transport, Technical University of Denmark, Bygningstorvet 1, 2800 Kgs Lyngby, Denmark



15-16 February 2017, Piacenza Expo

Before 2015: gloom and doom

Figure 23: Percentage cost increase in sea-based costs due to SECA and NECA in 2015 for ro/ro routes

Source: The impact on short sea shipping and the risk of modal shift from the establishment of a NOx emission control area in the North Sea (North Sea Consultation Group, 2013)

Stena Line records 16% yearly growth on North Sea route

Stena Britannica sails between the UK port of Harwich and the Hook of Holland in the Netherlands

DFDS Wraps Up Record Year, Expects Higher Revenue in 2016

Image Courtesy: DFDS

Danish shipping and logistics company DFDS posted a profit of DKK 1.07bn (USD 151m), up by 89pct when compared to last year's DKK 571 million.

For the full-year 2015, the group reported revenue increase of 5% to DKK 13.5bn. Organic revenue growth, adjusted for route closures and acquisitions, was 7% mainly driven by 7% higher freight shipping volumes and 8% more passengers. In the fourth quarter, organic revenue growth was 10%.

P&O breaks Channel freight record in 2015

By Charlie Bartlett from London

P&O Ferries transported more freight between Dover and Calais in 2015 than any other year in its "modern history," amounting to 1,340,317 trucks.

The result is a 22% year-on-year increase over 2014, and is due in part to disruptions at the channel tunnel, which caused a 172% year-on-year increase in HGVs on is separate Teesport to Zeebrugge route throughout the month of July.

The group pressed a sixth ship back into service on the English Channel that month in order to increase capacity.

Fuel prices after mid 2014

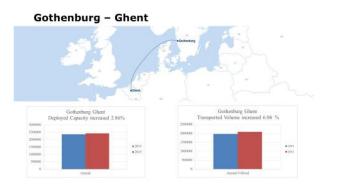
Current DFDS network

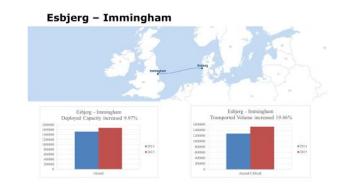
- 18 Routes (22 links)
- ~38 vessels
- Up to 535 departures/week, 13 countries, 30 ports
- 4 main areas
 - North Sea (9 Routes, 20 vessels)
 - Baltic Sea (5 Routes, 7 vessels)
 - Cross-Channel (3 Routes, 6-7 vessels)
 - Mediterranean (1 Route, 1-2 vessels)

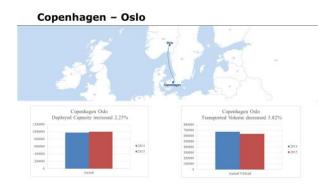
Active routes to study (7)

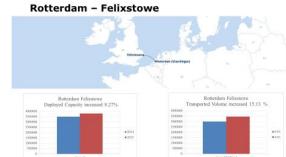
Route	Vessel		Vessel Capacity				
	Туре	Tech	Lane meters	Passengers			
NORTH SEA							
Cathardana Chart	RoRo	Scrubber	3831	12			
Gothenburg – Ghent – Brevik	RoRo	Scrubber	3831	12			
DIEVIK	RoRo	Scrubber	3831	12			
Cononhogon Oglo	Cruise	Scrubber	(450 cars)	1790			
Copenhagen – Oslo	Cruise	MGO	(320 cars)	1989			
Eshiona Imminaham	RoRo	Scrubber	3000	12			
Esbjerg – Immingham	RoRo	MGO	3000	12			
	RoRo	Scrubber	2772	12			
Rotterdam – Felixstowe	RoRo	Scrubber	2772	12			
	RoRo	MGO	1680	12			
	B	ALTIC SEA					
T71 ' 1 T7' 1	RoPax	Scrubber	2115	328			
Klaipeda – Kiel	RoPax	Scrubber	2240	328			
Klainede – Kaulahanna	RoPax	MGO	2490	600			
Klaipeda – Karlshamn	RoPax	MGO	2496	600			
	CRO	SS CHANNI	EL				
D (11)	RoPax	MGO	1784	1100			
Dover – Calais	RoPax	MGO	1949	405			

15/2/2017

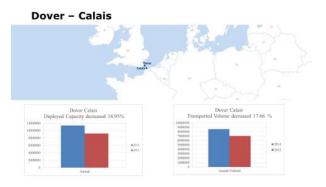


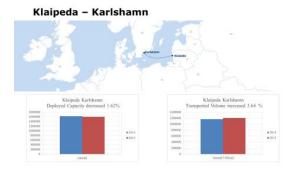

Also!

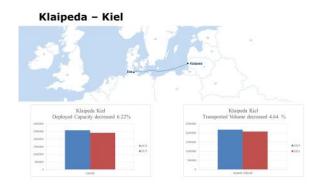

- Esbjerg- Harwich (recently shut down)
- Marseille-Tunis (outside SECA)



Transported volume and deployed capacity 2014 vs 2015





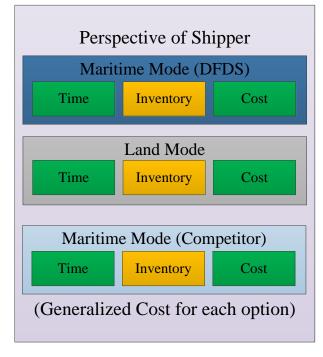


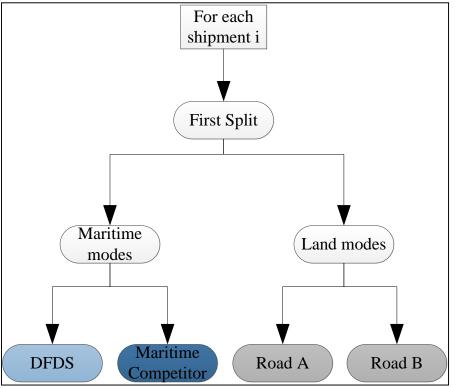


Transported volume and deployed capacity 2014 vs 2015

Summary of new market picture

Route	Year	Trips Total	Transported Cargo Volume change (%)	Cargo Rate change (%)	Revenue Change (%)	Annual Fuel Cost Change (%)
Gothenburg	2014	553	6.06	-5.62	0.09	-52.89
Ghent*	2015	569	0.00	5.02	0.07	52.05
Esbjerg	2014	512	19.46	-0.5	18.85	-15.29
Immingham	2015	580	17.40	-0.5	10.05	-13.27
Rotterdam	2014	1514	15.13	0.5	15.71	-24.34
Felixstowe	2015	1637	15.15	0.5	15.71	-27.34
Copenhagen	2014	687	-5.82	1.58	4.28	-9.36
Oslo	2015	702	-5.82	1.56	4.20	-9.50
Klaipeda	2014	611	-4.64	-7.71	-8.89	-30.05
Kiel*	2015	615	-4.04	-/./1	-0.09	-30.03
Klaipeda	2014	717	3.64	-2.32	3.73	-22.99
Karlshamn	2015	710	5.04	-2.32	5.75	-22.99
Dover	2014	6210	-17.66	9.36	-18.04	50.25
Calais	2015	4994	-17.00	9.30	-10.04	-50.35


Objectives: Understand the wider implications of the new limit


- On SECAs (is the environmental improvement significant?)
- How is Short Sea Shipping affected
- Model modal shifts
- Identify the negative impacts of the regulation
- Propose measures to mitigate and reverse these

Modal shifts model, based on generalized cost of transport


• General Case – Hierarchical Structure

Process of estimating the impacts of SECA

- **3** scenarios on Fuel Price
- Case 1: What actually happened (MGO with actual prices)

• Case 2: What would happen if MGO prices returned to 2014 levels

• Case 3: What would happen if HFO still allowed (Actual prices)

WP3 Measures to mitigate or reverse modal shifts

- Task 3.1 Measures from the Task 3.2 Measures from *Ro/Ro operator*
- Speed reduction
- Service frequency and schedule reconfiguration
- Fleet and network reconfiguration
- Alternative fuels such as LNG
- Other technical measures such as scrubbers
- Appropriate pricing policies

- policy makers
- Full or partial internalization of external costs, all modes
- Easing of port dues/fairway dues/ ice dues for relevant shipping
- Public funding or subsidies
- Any potential policy measure recommended by the ESSF and its subgroups

15-16 February 2017, Piacenza Expo

LOGISTICS & MARITIME FORUM European trends and regional perspectives

Effects of speed reduction on fuel consumption: Gothenburg- Ghent

Ship	Hours at berth	Hours sailing Weekly fuel consumption (tonnes)		Reduction (%)		
	Baselin	e Sailing Speed 18.0	6 knots			
Ship A			294.354			
Ship B	38	130	305.564	NA		
Ship C	30	150	270.198	NA		
Ship D			277.407			
Increase Trip by 1 hour, New Sailing Speed 17.26 knots						
Ship A	32	136	264.585	-10.11		
Ship B			273.453	-10.51		
Ship C			245.181	-9.26		
Ship D			253.777	-8.52		
Increase Trip by 2 hours, New Sailing Speed 16.53 knots						
Ship A		142	240.315	-18.36		
Ship B	26		247.638	-18.96		
Ship C	20		222.784	-17.55		
Ship D			231.167	-16.67		
Increase Trip by 3 hours , New Sailing Speed 15.86 knots						
Ship A		148	191.740	-34.86		
Ship B	20		196.167	-35.80		
Ship C	20		177.715	-34.23		
Ship D			185.196	-33.24		

15/2/2017

Effects of speed reduction on cargo volumes, revenue, fuel cost

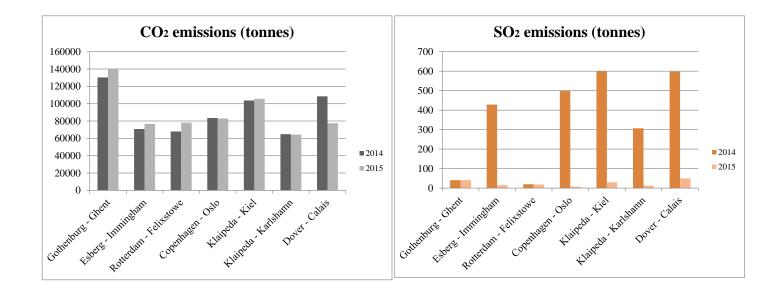
Baseline Sailing Speed 18.06 knots					
	Transported Im	Cost of Fuel (€)			
Fuel Case 1	42331				
Fuel Case 2	39533	Confidential			
Fuel Case 3	43724				
Increas	e Trip by 1 hour , Nev	w Sailing Speed 17.26 knots			
ΔTransported Im (%) ΔCost of Fuel (%)					
Fuel Case 1	-0.05				
Fuel Case 2	-0.36	-9.98			
Fuel Case 3	-0.11				
Increase	e Trip by 2 hours , Ne	w Sailing Speed 16.53 knots			
Fuel Case 1	-0.1				
Fuel Case 2	-0.7	-18.32			
Fuel Case 3	-0.15				
Increase	Increase Trip by 3 hours, New Sailing Speed 15.86 knots				
Fuel Case 1	-0.16				
Fuel Case 2	-0.76	-34.99			
Fuel Case 3	-0.21				

Effects of change in sailing frequency

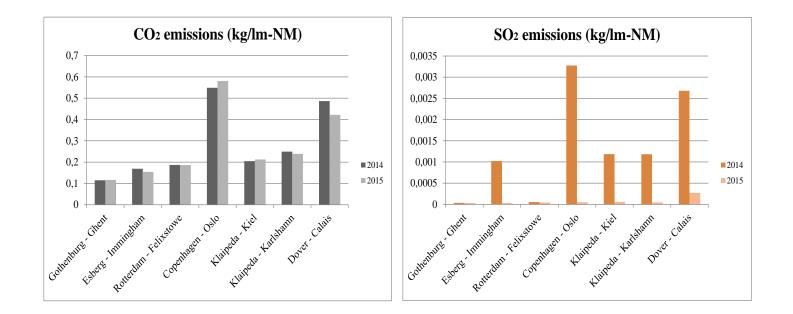
	New sailing	New	New capacity	ΔRevenue	∆Fuel Cost
	frequency	Transported lm	utilization	(€)	(€)
Fuel Case 2	5	29060	96.86	-112273	-33579
Fuel Case 3	7	34475	82.02	39897	16569

Klaipeda – Kiel (Normal frequency 7 sailings per week)

	New sailing	New	New capacity	∆Revenue	ΔFuel Cost
	frequency	Transported lm	utilization		ΔI ⁻ uel Cost
Fuel Case 1	6	26900	97.36	-32419	-28172
Fuel Case 2	6	25950	96.19	-25082	-57093


Dover – Calais (Normal frequency 99 sailings per week)

	New sailing	New	New capacity	ΔRevenue	ΔFuel Cost
	frequency	Transported lm	utilization		
Fuel Case 1	75	131724	94.63	-56039	-58844
Fuel Case 2	75	130760	88.25	-74580	-119255


Environmental impact of new sulphur limits 2014 vs 2015


• Total emissions

Environmental impact of new sulphur limits 2014 vs 2015


Conclusion and further work

- Freight Rate is the most important component
- **Time** is **not crucial**, except for high-value cargoes. **Speed reduction** can help in times of high fuel prices
- Changes in **sailing frequency** can help with capacity utilization rates
- Technology investments depend on fuel prices, and returns are currently delayed
- **Profitability** of ship operator is **masking the negative effects** of the regulation a happy coincidence

Still to be investigated

- Task 3.2 Measures from policy makers
- Full or partial internalization of external costs, all modes
- ECOBONUS type subsidy
- Easing of port dues/fairway dues/ ice dues for relevant shipping
- Other public funding or subsidies
- Any potential policy measure recommended by the ESSF and its subgroups

STAY TUNED

- FINAL PROJECT WORKSHOP
- JUNE 2017, DTU

Dissemination

2016

- Zis T. and Psaraftis H. N. (2016), "The DTU RoRoSECA project: economic, environmental and modal shift considerations"
 Presented at Workshop with Atlantis Ecobonus (Towards a common EU external cost of transport calculator) in Seville, Spain om 22-23. of September 2016.
- Zis T. and Psaraftis H. N. (2016), "The implications of the lower sulphur limits on Ro-Ro shipping in Northern Europe" Presented at IAME, Annual conference of the International Association of Maritime Economists in Hamburg, Germany on 23-26. of August 2016.
- Zis T. and Psaraftis H. N. (2016), "Modal shifts and decision models under the new sulphur limits within Emission Control Areas" Presented at EURO INFORMS 28th European Conference on Operational Research in Poznan, Poland on 3-6. of July 2016.
- Zis T. and Psaraftis H. N. (2016), "The indirect effects of the new low sulphur requrements in ECAs in RoRo shipping"
 Presented af Devport International Conference SHORT-SEA SHIPPING: Myth or Future of Regional Transport in Le Havre, France on 19-20. of May 2016.
- Psaraftis H. N. (2016), "Environmental KPIs for the Motorways of the Sea" Presented at the 1st MoS Forum on Environment in Brussels, Belgium on 15. of March 2016.

Psaraftis H. N. (2016), "RoRo Seca: A new research project at DTU"

 Psaraftis H. N. (2016), "Short sea-shipping: a serious contender in the European transport contest?" Presented at the 7th Annual RoRo Shipping Conference in Gothenburg, Sweden on 17. of February 2016.

Presented at the OECD/ITF Workshop on Project Impact of MARPOL Annex VI (International Transport Forum) in Paris, France on 1. of February 2016.

New Book

Psaraftis Ed.

International Series in Operations Research & Management Science

2

Green Transportation Logistics

Green

Harilaos N. Psaraftis Editor

Transportation Logistics

The Quest for Win-Win Solutions

D Springer

15 chapters, 548 pages

- Covers all modes of transport
- Plus green corridors, TEN-Ts, etc

Acknowledgments

- Danish Maritime Fund
- Thalis Zis, DTU postdoc
- Poul Woodall, DFDS

Thank you

See more: <u>www.roroseca.transport.dtu.dk</u>

Contact: hnpsar@dtu.dk

