External cost calculator for the SHIP-DESMO model

by

Hans Otto Kristensen

HOK Marineconsult ApS Hans Otto Kristensen

The Technical University of Denmark Harilaos Psaraftis

Project no. 2014-122: Mitigating and reversing the side-effects of environmental legislation on Ro-Ro shipping in Northern Europe Work Package 2.3, Report no. 06 August 2016

Technical University of Denmark

Contents

External cost calculator for SHIP-DESMO
Introduction
Implementation of the CEN Standard 16258 in the SHIP-DESMO model for Ro-Ro passenger ships
Internalisation of transport external costs
Emission calculations for land transport modes7
Comparison between transport modes9
Example calculations
References
Appendix A - Different interior areas of Ro-Ro passenger ships 11
Appendix B - Calculation example from CEN standard 1625813
Appendix C: Calculation examples of emissions and external costs with SHIP-DESMO for a Ro Ro passenger ship
Appendix D Calculation examples of emissions and external costs with SHIP-DESMO for a Ro Ro cargo ship

External cost calculator for SHIP-DESMO

Introduction

This report contains a description of the background for the external cost calculations done in the generic Ro-Ro ship model program SHIP-DESMO, primary intended for calculation of the energy demand (fuel consumption) and emissions for Ro-Ro cargo and Ro-Ro passenger ships. Two separate programs have been developed, one for 1) Ro-Ro cargo ships and one for 2) Ro-Ro passenger ships. The theoretical background for these two SHIP-DESMO models is described in five separate reports:

- 1. Report No. 1: "Prediction of resistance and propulsion power of Ro-Ro ships" by Hans Otto Kristensen
- 2. Report No. 2: "Analysis of technical data of Ro-Ro ships" by Hans Otto Kristensen
- 3. Report No. 3: "Energy demand and exhaust gas emissions of marine engines" by Hans Otto Kristensen
- 4. Report No. 4: "Analysis of propulsion power data of Ro-Ro ships and analysis of the CEN standard 16258 for Ro-Ro ships" by Hans Otto Kristensen.
- 5. Report No. 5: "Energy and emission model for trucks" by Hans Otto Kristensen.

All five reports have been prepared as deliverables for the project no. 2014-122: Mitigating and reversing the side-effects of environmental legislation on Ro-Ro shipping in Northern Europe. Work Package 2.3 carried out for The Traffic Section of The Technical University of Denmark.

In Report No. 1 it is shown that propulsion power determined by using an empirical method (based on ship resistance calculated using the so-called "Ship Resistance" method, by Guldhammer and Harvald) yields results which are very close to actual results obtained from model tests with Ro-Ro ships.

Furthermore extensive technical data for Ro-Ro ships have been analyzed and described in Report No. 2, such that two generic ship design and power prediction models for Ro-Ro cargo and Ro-Ro passenger ships have been developed for this project, the so-called SHIP-DESMO models.

Implementation of the CEN Standard 16258 in the SHIP-DESMO model for Ro-Ro passenger ships

Transport services carried out by Ro-Ro passenger ships fulfils two separate transport needs, namely 1) passenger related transport of passengers and personal cars, campers, busses etc. and 2) pure freight transport of trucks and other rolling cargo such as unaccompanied vehicles/mafi trailers.

The CEN Standard 16258 describes two different allocation methods for allocation of the total ship emissions on passenger and freight transport respectively. The two methods are the so-called 1) mass method and the 2) area method. A third method might be an average allocation method, based on the mean values of the area and the mass allocation method.

All three methods, i.e. also the average method, are used in SHIP-DESMO for allocation of energy demand, emissions and external costs on the different cargo segments, 1) rolling cargo (on trucks, trailers, mafis etc.) and 2) the passengers including cars, campers, busses etc.

Mass method

Calculation of the mass shall be based on:

- Number/mass of passengers
- Number/mass of accompanied cars
- Number of accompanied caravans and mobile homes etc.
- Number/mass of accompanied busses
- Total mass of cargo being carried, including any packaging, container, and means of handling or means of transport like trailers and vehicles

Area method

The area method is based on 100 % accessible area capacity according to valid general arrangement plans including following areas:

- Accessible vehicle deck area, including hanging decks (if available and operational)
- Accessible passenger deck area

Area not in use for passenger and cargo, such as bridge, engine area, crew area, galley and other service areas are excluded.

Default values for mass, length and width presented in Table 1 may be used for both methods.

	Mass (kg)	Length (m)	Width (m)
Passenger and luggage	100	Not applicable	Not applicable
Passenger car	1500	6	3.1
Bus	15000	12	3.1
Caravan (small)	1000	3	3.1
Caravan (medium)	2000	6	3.1
Caravan (large)	2500	10	3.1
Mobile home	3500	8	3.1
Motorcycle	200	1.5	3.1
Unaccompanied trailer	8000	14	3.1
Accompanied/articulated trailer	16000	17	3.1
Road train - Continent	18500	19	3.1
Road train - Scandinavia	20000	24.5	3.1

Table 1 Default values for mass, length and width

In the CEN Standard 16258 guidelines it is mentioned that the above mentioned masses and associated areas may be used in the calculations. However for passenger cars and lane meters for rolling cargo more correct values are obtained from a paper especially on the issue of space allocation [Kristensen and Hagemeister 2011]. Based on this reference following areas in Table 2 have been found as representative for 60 Ro-Ro passenger ships. Figures showing the statistical analysis of the data for different types of area are given in Appendix A.

Table 2: Area for Ro-Ro deck space and accommodation for Ro-Ro cargo ships

Unit	General	Low comfort	High comfort
m ² per lane metre	4.1	-	-
m ² per car	15.0	-	-
m ² per unberthed passenger (area for cafeteria, restaurants, halls and corridors and toilets, i.e. passenger related accommodation)	2.4	1.8	3.0
m ² per berthed passenger (cabin area)	4.5	-	-

As no general arrangement plans are available when using the SHIP-DESMO model, the areas in Table 1 and 2 are used in the CEN Standard 16258 calculation procedures, which have been implemented in the SHIP-DESMO model for Ro-Ro passenger ships. The calculation example shown in Appendix B for the CEN standard has also been used in the implementation procedure.

The implementation of the CEN Standard 16258 is described in following report of this project: Report No. 4: "*Analysis of propulsion power data of Ro-Ro ships and analysis of the CEN standard 16258 for Ro-Ro ships*" by Hans Otto Kristensen.

Internalisation of transport external costs

Transport activities give rise to environmental impacts and accidents. In contrast to the benefits, the costs of these effects are generally not borne by the transport users. The internalisation of external costs means making such effects part of the decision-making process of transport users. A model for the internalisation of external costs has been integrated in the two SHIP-DESMO models.

There exist many different sources for calculation of external costs and the variation of values is quite large, and some of the results are ufortunately very misleading. The values depend on the geographical area, including also the area type, as example rural area versus urban area.

For the present project external cost factors are based on the work done by DTU and COWI and described in the Excel spreadsheet "*Transportøkonomiske Enhedspriser*" down loaded from: <u>http://www.modelcenter.transport.dtu.dk/Noegletal/Transportoekonomiske-Enhedhespriser</u>

The price of the different types of emissions are shown in table 1.

Table 1: External costs for emissions

EURO exchange rate (EURO/DKK): 7.50

CITY	DKK/kg		
	Low	Mean	High
CO ₂	0.05	0.08	0.08
Particulates	251	1,749	11,813
NOx	5	53	409
SOx	57	241	1,147
СО	0.005	0.024	3.100
HC	1	3	17

EURO/kg			
Low	Mean	High	
0	0	0	
33	233	1575	
1	7	55	
8	32	153	
0	0	0	
0.133	0.400	2.267	

NON CITY		DKK/kg		 	EURO/kg	
	Low	Mean	High	Low	Mean	High
CO ₂	0.05	0.08	0.08	0.0067	0.0107	0.0107
Particulates	35	244	1,647	5	33	220
NOx	0	53	375	0.00	7.07	50.0
SOx	11	209	1,260	1.47	27.87	168.0
со	0	0.009	1.109	0	0.0012	0.148
HC	1	2	15	0.133	0.267	2.00

External costs related to road traffic is subdivided into following categories:

- 1. Noise
- 2. Accidents
- 3. Congestion
- 4. Infrastructure
- 5. Climate change

Three different transport modes are included in the analysis in the SHIP-DESMO models

- 1. Trucks
- 2. Busses
- 3. Cars

The external costs of different types and for the three different transport modes are given in table 2

Table 2: Non-emission related external cost for different transport forms

23 t truck

	DKK/km		
	Low	Mean	High
Noise	0.05	0.11	0.22
Accidents	0.30	1.39	1.82
Congestion	0.15	0.64	1.89
Infrastructure	0.28	1.13	1.69

	EURO/km	
Low	Mean	High
0.007	0.015	0.029
0.040	0.185	0.243
0.020	0.085	0.252
0.037	0.151	0.225
0.10	0.44	0.75

Car for 4 persons (diesel and petrol)

	DKK/km		
	Low	Mean	High
Noise	0.03	0.05	0.11
Accidents	0.18	0.23	0.31
Congestion	0.09	0.38	1.06
Infrastructure	0.00	0.01	0.02

Bus for 46 passengers (diesel)

	DKK/km		
	Low	Mean	High
Noise	0.12	0.24	0.47
Accidents	0.40	0.52	0.66
Congestion	0.15	0.70	1.98
Infrastructure	0.15	0.62	0.93

	EURO/km	
Low	Mean	High
0.004	0.0067	0.015
0.024	0.031	0.041
0.012	0.051	0.141
0.000	0.001	0.003
0.040	0.089	0.200

	EURO/km	
Low	Mean	High
0.016	0.032	0.063
0.053	0.069	0.088
0.020	0.093	0.264
0.020	0.083	0.124
0.11	0.28	0.54

Climate change	Low	Mean	High		Low	Mean	High
DKK/t CO ₂	53	80	80	EURO/t	7.1	10.7	10.7

Emission calculations for land transport modes

In order to carry out a complete emission and cost analysis such that the ship related emissions and external costs can be compared on an equivalent basis with land transportation emissions and external costs, additional emission factors are needed for trucks, busses and cars.

A truck analysis is described in the separate report: Report No. 5: "*Energy and emission model for trucks*" by Hans Otto Kristensen.

For busses and cars separate calculations have been carried out with the TEMA 2015.

<u>Bus</u>

A route of 442 km has been simulated and the energy demand and emissions for the complete bus are shown in table 3. On basis of these results a model for calculation of emissions per km has been developed and the results are shown in table 4 for Euro norm 4 - 6.

<u>Car</u>

A route of 442 km has been simulated and the energy demand and emissions for the car are shown in table 5. On basis of these results a model for calculation of emissions per km has been developed and the results are shown in table 6. Only cars fulfilling Euro norm 6 have been calculated.

Bus type	Distance	Energy	SO ₂	CO ₂	СО	HC	NOx	PM ₁₀
	km	MJ	gram	gram	gram	gram	gram	gram
Tourist <= 18 t, Euro norm 6	442	4191	10.06	310101	370	9.8	138	1.49
Tourist <= 18 t, Euro norm 5 - SCR	442	4061	9.75	300531	687	9.59	1382	9.94
Tourist <= 18 t, Euro norm 5 - EGR	442	4276	10.26	316398	358	19.5	1143	14.8
Tourist <= 18 t, Euro norm 4	442	4203	10.09	311051	353	19.15	1912	14.59
Tourist > 18 t, Euro norm 4	442	4347	10.43	321672	365	20.52	2037	15.41
Tourist > 18 t, Euro norm 3	442	4379	10.51	324050	705	144.07	2865	62.4
Tourist > 18 t, Euro norm 5	442	4435	10.64	328175	373	20.94	1223	15.64

Table 3: Results of TEMA 2015 model calculations for different tourist busses

Table 4 Emissions per km based on an analysis of the data in table 3

Euronorm (3 - 6)		4	5	6
Energy demand per km	MJ/km	9.7	9.7	9.7
CO ₂ emissions per km	g/km	718	718	718
NOx emissions per km	g/km	4.481	2.852	0.320
SOx emissions per km	g/km	0.0233	0.0233	0.0233
CO emissions per km	g/km	0.815	1.086	0.854
HC emissions per km	g/km	0.0450	0.0378	0.0227
Particulate emissions per km	g/km	0.0340	0.0306	0.0039

Tourist bus - diesel - according to TEMA 2015

Car type	Engine	Distance	MJ	SO ₂	CO ₂	CO	HC	NOx	PM_{10}
	Litres	km		gram	gram	gram	gram	gram	gram
Diesel, Euro Norm 6. <1.4 L	1.4	442	866	2.08	64049	8.99	3.05	171.68	0.77
Diesel, Euro Norm 6. 1.4 - 2 L	1.7	442	825	1.98	61061	6.59	2.24	125.81	0.57
Diesel, Euro Norm 6. < 2 L	1.9	442	1101	2.64	81464	6.2	2.11	118.41	0.63
Benzin, Euronorm 6, <0.8 L	0.8	442	737	1.77	53646	337.26	7.06	2.45	0.45
Benzin, Euronorm 6, 0.8-<1.4 L	1.1	442	802	1.93	58409	337.26	7.06	2.45	0.45
Benzin, Euronorm 6, 1.4 - 2 L	1.7	442	1082	2.6	78749	410.42	8.2	2.83	0.53
Benzin, Euronorm 6, > 2 L	2.1	442	1308	3.14	95238	414.67	8.27	2.85	0.05

Table 5: Results of TEMA 2015 model calculations for Euro norm 6 cars

Table 6 Emissions per km based on an analysis of the data in table 5

Diesel (1) or petrol driven (2) car		1	2	2
Normal (1) or hybrid (2)		1	1	2
Engine volume (0.8 - 2.2 litres)		1.6	1.6	1.6
Energy demand per km	MJ/km	2.05	2.40	1.60
CO ₂ emissions per km	g/km	151.4	174.4	116.3
NOx emissions per km	g/km	0.3347	0.0063	0.0042
SOx emissions per km	g/km	0.0049	0.0058	0.0038
CO emissions per km	g/km	0.0176	0.8980	0.5987
HC emissions per km	g/km	0.0060	0.0183	0.0122
Particulate emissions per km	g/km	0.00156	0.00086	0.00057

Car (Euro 6) according to TEMA 2015

Comparison between transport modes

For Ro-Ro passenger ships the emissions and external costs are related to lanemeters per nautical mile and passengers per nautical mile respectively, according to the different allocation methods as previously described. With the introduction of emission calculation procedures for trucks, busses and cars SHIP-DESMO makes it possible to compare the transport by sea with an equivalent transport by road of the same amount of cargo (rolling cargo and passengers) which is carried on the ship.

Example calculations

In order to illustrate the capabilities of SHIP-DESMO different typical calculation examples are shown in Appendix C and D.

References

- Kristensen H. O: *Prediction of resistance and propulsion power of Ro-Ro ships*. August 2015. Report No. 01 of project No. 2014-122: Mitigating and reversing the side-effects of environmental legislation on Ro-Ro shipping in Northern Europe.
- Kristensen H. O: *Analysis of technical data of Ro-Ro ships.* July 2016. Report No. 02 of project No. 2014-122: Mitigating and reversing the side-effects of environmental legislation on Ro-Ro shipping in Northern Europe.
- Kristensen H. O: *Energy demand and exhaust gas emissions of marine engines.* September 2015. Report No. 03 of project No. 2014-122: Mitigating and reversing the sideeffects of environmental legislation on Ro-Ro shipping in Northern Europe.
- Kristensen H. O: Analysis of propulsion power data of Ro-Ro ships and analysis of the CEN Standard 16258 for Ro-Ro ships. July 2016. Report No. 04 of project No. 2014-122: Mitigating and reversing the side-effects of environmental legislation on Ro-Ro shipping in Northern Europe.
- Kristensen H. O: *Energy and emission model for trucks.* September 2015. Report No. 05 of project No. 2014-122: Mitigating and reversing the side-effects of environmental legislation on Ro-Ro shipping in Northern Europe.
- Significant Ships 1990 2014, published annually by Royal Institution of Naval Architects (RINA)
- Kristensen H. O and Hagemeister C: *Environmental Performance Evaluation of Ro-Ro Passenger Ferry Transportation.* August 2011. Trafikdage på Aalborg Universitet. ISSN 1603 9696.
- CEN Standard 16258: Methodology for calculation and declaration of energy consumption and GHG emissions of transport services (freight and passengers).

Appendix A - Different interior areas of Ro-Ro passenger ships

Fig. A1 Car deck area of Ro-Ro passenger ships (Hagemeister thesis work 2011)

Fig. A2 Area of cargo lanes of Ro-Ro passenger ships (Hagemeister thesis work 2011)

Fig. A3 Area of cafeteria, restaurants, halls, corridors and toilets (Hagemeister thesis work 2011)

Fig. A4 Area of passenger cabins of Ro-Ro passenger ships (Hagemeister thesis work 2011)

Appendix B - Calculation example from CEN standard 16258

Example for combined passenger and freight transport: ferry lines

G.1 Description of the example

This example serves as an illustration of the impact of the two allocation methods specified in Annex B on one real ferry transport system.

The areas in the example are based on 100 % accessible area capacity according to valid general arrangement plan (GA-plan). The transport statistics used are one year real data i.e. this example presents an example of annual average allocation values. The values per entity used are the default values presented in Annex B, Table B1.

	An	nual activity d	lata		Value p	per entity	
Entity	Quantity	Mass (t)	Area (m²)	Mass (kg)	Area (m²)	Length (m)	Width (m)
Pax deck area					7 <mark>5</mark> 50		
Vehicles deck area					5 770		
Passenger and luggage	478 500	47 850		100			
Passenger car	90 000	135 000	1 674 000	1 500	18,6	6	3,1
Bus	1 000	15 000	37 200	15 000	37,2	12	3,1
Caravan <mark>(</mark> small)	500	500	4 650	1 000	9,3	3	3,1
Caravan (medium)	500	1 000	9 300	2 000	18,6	6	3,1
Caravan <mark>(</mark> large)	500	1 250	15 500	2 500	31,0	10	3,1
Mobile home	-	-	-	3 500	24,8	8	3,1
Motorcycle	1 000	200	4 650	200	4,7	1,5	3,1
Unaccompanied trailer							
Empty trailer				8 000	43,4	14	3,1
Average load per trailer				19 000			
Total	4 000	108 000	173 600	27 000	43,4	14	3,1
Accompanied trailer							
Empty trailer				16 000	52,7	17	3,1
Average load per trailer				19 000			
Total	34 000	1 190 000	1 791 800	35 000	52,7	17	3,1

Table G.1 — Data for this example

G.2 Results and comparison of the two allocation methods

In the mass allocation method, the weight of vehicles (including their loads for freight) and weight of passengers are based on annual activity data and values per entity presented in Table G.1. Table G.2 gives the corresponding results.

Mass allocation method	mass	%
Freight	1 298 000	87 %
Passengers	200 800	13 %
Total	1 498 800	100 %

Table G.2 — Results with use of Mass allocation method

In the area allocation method the relation between areas used by freight and passenger serves as the allocation ratio. Whole passenger deck area is allocated to passengers. Vehicle deck area is allocated according to the ratio between freight vehicles and passenger vehicles according to activity data and values per entity presented in Table G1. Table G.3 gives the corresponding results.

Area allocation method	area	%
Freight	3 056	23 %
Passengers	10 264	77 %
Total	13 320	100 %

In conclusion, by using one allocation method or the other for the same combined passenger and cargo ferry, the distribution of energy consumption and GHG emissions gives completely different results. Hence, if the emission and energy data includes ferry vessel operation and the receiver of the data wishes to compare results, particular attention should be paid to the consistency in allocation methodology. As stated in Annex B.1, the ferry allocation method shall be consistent over time and per ferry line unless the ship is converted or allocated to a different line. Information about the allocation method used for a particular transport service will be available to the receiver of the data, and can be found in the supporting information which accompanies the declaration of results (see 10.3.2).

Appendix C: Calculation examples of emissions and external costs with SHIP-DESMO for a Ro Ro passenger ship

Example No. 1: 2000 passenger Ro-Ro passenger ship loaded with 100 % trucks and only 200 passengers (typical off season situation). Average allocation procedure

Emissions (g/cargo lanemeter/km)

Ship		Truck	
CO ₂	218.7	CO ₂	64.4
10 x NOx	8.4	10 x NOx	3.52
100 x SOx	14.3	100 x SOx	0.04
100 x CO	17.4	100 x CO	1.00
100 x HC	17.4	100 x HC	0.15
100 x Particulates	9.4	100 x Particulates	0.20

External costs (EURO/lanemeter/1000 km)

External costs (EURO/lanemeter/1000 km)						
Ship T		Truck				
Emissions	15.73	Emissions	3.27			
Noise	0.00	Noise	1.05			
Accidents	0.00	Accidents	13.24			
Congestion	0.00	Congestion	6.10			
Infrastructure	0.00	Infrastructure	10.76			
Climate change	2.33	Climate change	0.69			
Total	18.1	Total	35.1			

External costs (EURO/lanemeter/1000 km)

Ship		Truck	
CO ₂	2.33	CO ₂	0.69
NOx	5.91	NOx	2.48
SOx	4.00	SOx	0.01
со	0.00	со	0.00
HC	0.05	нс	0.00
Particulates	3.43	Particulates	0.09
Total	15.73	Total	3.27

Service allowance on ship power (%)

10

It is possible to scale the influence some of the external costs as follows:

	Scaling
Externality	(pct)
Noise	100
Accidents	100
Congestion	100
Infrastructure	100
Climate change	100

100 pct. means full implementation according to the quidelines by DTU/COWI (2016)

Emissions (g/passenger/km)

Ship		Bus	
CO ₂	0.0	CO ₂	17.9
10 x NOx	0.0	10 x NOx	1.1
100 x SOx	0.0	100 x SOx	0.1
100 x CO	0.0	100 x CO	2.0
100 x HC	0.0	100 x HC	0.1
100 x Particulates	0.0	100 x Particulates	0.1

External costs (EURO/passenger/1000 km)

Ship		Bus	
Emissions	0.00	Emissions	1.06
Noise	0.00	Noise	0.80
Accidents	0.00	Accidents	1.73
Congestion	0.00	Congestion	2.33
Infrastructure	0.00	Infrastructure	2.07
Climate change	0.00	Climate change	0.19
Total	0.0	Total	8.2

Emissions (g/passenger/km)

Ship		Car	
CO ₂	0.0	CO ₂	94.6
10 x NOx	0.0	10 x NOx	0.032
100 x SOx	0.0	100 x SOx	0.312
100 x CO	0.0	100 x CO	46.0
100 x HC	0.0	100 x HC	0.93
100 x Particulates	0.0	100 x Particulates	0.036

External costs (EURO/passenger/1000 km)

Ship		Car	
Emissions	0.00	Emissions	1.14
Noise	0.00	Noise	3.33
Accidents	0.00	Accidents	15.33
Congestion	0.00	Congestion	25.3
Infrastructure	0.00	Infrastructure	0.67
Climate change	0.00	Climate change	1.01
Total	0.0	Total	46.8

Example No. 2: 2000 passenger Ro-Ro passenger ship loaded with 100 % cars (450) and 2000 passengers (typical summer season situation). Average allocation procedure

Emissions (g/cargo lanemeter/km)

Ship		Truck	
CO ₂	0.0	CO ₂	64.4
10 x NOx	0.0	10 x NOx	3.52
100 x SOx	0.0	100 x SOx	0.04
100 x CO	0.0	100 x CO	1.00
100 x HC	0.0	100 x HC	0.15
100 x Particulates	0.0	100 x Particulates	0.20

External costs (EURO/lanemeter/1000 km)

Ship		Truck	
Emissions	0.00	Emissions	3.27
Noise	0.00	Noise	1.05
Accidents	0.00	Accidents	13.24
Congestion	0.00	Congestion	6.10
Infrastructure	0.00	Infrastructure	10.76
Climate change	0.00	Climate change	0.69
Total	0.0	Total	35.1

External costs (EURO/lanemeter/1000 km)

Ship		Truck	
CO ₂	0.00	CO ₂	0.69
NOx	0.00	NOx	2.48
SOx	0.00	SOx	0.01
со	0.00	со	0.00
HC	0.00	нс	0.00
Particulates	0.00	Particulates	0.09
Total	0.00	Total	3.27

Service allowance on ship power (%)	10
-------------------------------------	----

It is possible to scale the influence some of the external costs as follows:

	Scaling
Externality	(pct)
Noise	100
Accidents	100
Congestion	100
Infrastructure	100
Climate change	100

100 pct. means full implementation according to the quidelines by DTU/COWI (2016)

Emissions (g/passenger/km)

Ship		Bus	
CO ₂	129.8	CO ₂	17.9
10 x NOx	5.0	10 x NOx	1.1
100 x SOx	8.5	100 x SOx	0.1
100 x CO	10.3	100 x CO	2.0
100 x HC	10.3	100 x HC	0.1
100 x Particulates	5.6	100 x Particulates	0.1

External costs (EURO/passenger/1000 km)

Ship		Bus	
Emissions	9.33	Emissions	1.06
Noise	0.00	Noise	0.80
Accidents	0.00	Accidents	1.73
Congestion	0.00	Congestion	2.33
Infrastructure	0.00	Infrastructure	2.07
Climate change	1.38	Climate change	0.19
Total	10.7	Total	8.2

Emissions (g/passenger/km)

Ship		Car	
CO ₂	129.8	CO ₂	94.6
10 x NOx	5.0	10 x NOx	0.032
100 x SOx	8.5	100 x SOx	0.312
100 x CO	10.3	100 x CO	46.0
100 x HC	10.3	100 x HC	0.93
100 x Particulates	5.6	100 x Particulates	0.036

External costs (EURO/passenger/1000 km)

Ship		Car	
Emissions	9.33	Emissions	1.14
Noise	0.00	Noise	3.33
Accidents	0.00	Accidents	15.33
Congestion	0.00	Congestion	25.3
Infrastructure	0.00	Infrastructure	0.67
Climate change	1.38	Climate change	1.01
Total	10.7	Total	46.8

Example No. 3: 2000 passenger Ro-Ro passenger ship loaded with 1000 passengers (50 %) and 40 % trucks, 30 % busses and 30 % cars. Average allocation procedure

Emissions (g/cargo lanemeter/km)

Ship		Truck	
CO ₂	200.8	CO ₂	64.4
10 x NOx	7.7	10 x NOx	3.52
100 x SOx	13.2	100 x SOx	0.04
100 x CO	16.0	100 x CO	1.00
100 x HC	16.0	100 x HC	0.15
100 x Particulates	8.6	100 x Particulates	0.20

External costs (EURO/lanemeter/1000 km)

Ship		Truck	
Emissions	14.44	Emissions	3.27
Noise	0.00	Noise	1.05
Accidents	0.00	Accidents	13.24
Congestion	0.00	Congestion	6.10
Infrastructure	0.00	Infrastructure	10.76
Climate change	2.14	Climate change	0.69
Total	16.6	Total	35.1

External costs (EURO/lanemeter/1000 km)

Ship		Truck	
CO ₂	2.14	CO ₂	0.69
NOx	5.43	NOx	2.48
SOx	3.68	SOx	0.01
со	0.00	со	0.00
HC	0.04	нс	0.00
Particulates	3.15	Particulates	0.09
Total	14.44	Total	3.27

Service allowance on ship power (%) 10

It is possible to scale the influence some of the external costs as follows:

	Scaling
Externality	(pct)
Noise	100
Accidents	100
Congestion	100
Infrastructure	100
Climate change	100

100 pct. means full implementation according to the quidelines by DTU/COWI (2016)

Emissions (g/passenger/km)

Ship		Bus	
CO ₂	169.1	CO ₂	17.9
10 x NOx	6.5	10 x NOx	1.1
100 x SOx	11.1	100 x SOx	0.1
100 x CO	13.5	100 x CO	2.0
100 x HC	13.5	100 x HC	0.1
100 x Particulates	7.3	100 x Particulates	0.1

External costs (EURO/passenger/1000 km)

Ship		Bus	
Emissions	12.16	Emissions	1.06
Noise	0.00	Noise	0.80
Accidents	0.00	Accidents	1.73
Congestion	0.00	Congestion	2.33
Infrastructure	0.00	Infrastructure	2.07
Climate change	1.80	Climate change	0.19
Total	14.0	Total	8.2

Emissions (g/passenger/km)

Ship		Car	
CO ₂	169.1	CO ₂	94.6
10 x NOx	6.5	10 x NOx	0.032
100 x SOx	11.1	100 x SOx	0.312
100 x CO	13.5	100 x CO	46.0
100 x HC	13.5	100 x HC	0.93
100 x Particulates	7.3	100 x Particulates	0.036

External costs (EURO/passenger/1000 km)

Ship		Car	
Emissions	12.16	Emissions	1.14
Noise	0.00	Noise	3.33
Accidents	0.00	Accidents	15.33
Congestion	0.00	Congestion	25.3
Infrastructure	0.00	Infrastructure	0.67
Climate change	1.80	Climate change	1.01
Total	14.0	Total	46.8

Example No. 4: 2000 passenger Ro-Ro passenger ship loaded 500 passengers (25 %) and 50 % trucks, NO busses and 25 % cars (relatively poor utilization). Average allocation procedure

Ship data		Truck data	
Default ship (0) or ship alternative No. 1 or No. 2	0	Total weight of truck cargo (t)	18.0
Low cargo density (1) or high cargo density (2)	1	Truck weight (empty)	10.0
Passenger capacity (persons)	2000	Truck weight (loaded)	28.0
Actual number of passengers	500	Length of truck - total (m)	14.0
Total lanemeters (100 %) = LM	1337	EURO norm (2, 3, 4, 5 or 6)	4
Total number of cars (100 %)	450	Driving distance (km)	400
Actual payload/deadweight at maximum draught (pct.)	60	Driving percentage in city area	5
Rolling cargo lanemeters in pct. of total LM	50	Car data (Euro Norm 6)	
Bus lanemeters in pct. of total LM	0	Diesel (1) or petrol driven (2) car	2
Car and caravan lanemeters in pct. of total LM	25	Normal (1) or hybrid (2)	1
Occupied lanemeters	1003	Engine volume (0.8 - 2.2 litres)	1.8
Normal speed (knots)	22.3	Number of passengers (max. 4)	2
Actual speed (knots)	22.3	Bus data	
Speed change (pct.)	0	EURO norm (3 - 6)	4
Pass. comfort class (1 = low, 2 = average or 3 = high)	2	Number of passengers (max. 45)	40
Suphur content of oil (%)	0.1	External cost level	
NOx emissions (IMO TIER 1, 2 or 3)	3	1 = Low, 2 = Mean, 3 = High	2
Slow speed (1) or medium speed main engine (2)	2	EURO/DKK exchange rate	7.50
Sailing percentage in harbour conditions	2.0	Emission allocation method	
Remaining draft reserve (m) - shall be positive !	0.37	Area (1), mass (2) or average (3)	3
100 x HC 100 x CO 100 x SOx 10 x NOx CO2 0 50 100	■ F	Ro-Ro passenger ship Truck Emissions [g/lanemeter/km]	300
Total			
Climate change	Γ	Ro-Ro passenger ship	
Infrastructure			
Congestion			
Accidents			_
Noise	Exte	rnal costs [EURO/lanemeter/1000 kr	n]
Emissions			
0 5 10 1	5 2	20 25 30 35	40

Emissions (g/cargo lanemeter/km)

Ship		Truck	
CO ₂	255.4	CO ₂	64.4
10 x NOx	9.8	10 x NOx	3.52
100 x SOx	16.7	100 x SOx	0.04
100 x CO	20.4	100 x CO	1.00
100 x HC	20.4	100 x HC	0.15
100 x Particulates	11.0	100 x Particulates	0.20

External costs (EURO/lanemeter/1000 km)

Ship		Truck	
Emissions	18.36	Emissions	3.27
Noise	0.00	Noise	1.05
Accidents	0.00	Accidents	13.24
Congestion	0.00	Congestion	6.10
Infrastructure	0.00	Infrastructure	10.76
Climate change	2.72	Climate change	0.69
Total	21.1	Total	35.1

External costs (EURO/lanemeter/1000 km)

Ship		Truck	
CO ₂	2.72	CO ₂	0.69
NOx	6.90	NOx	2.48
SOx	4.68	SOx	0.01
со	0.00	со	0.00
нс	0.05	нс	0.00
Particulates	4.00	Particulates	0.09
Total	18.36	Total	3.27

Service allowance on ship power (%) 10

It is possible to scale the influence some of the external costs as follows:

	Scaling
Externality	(pct)
Noise	100
Accidents	100
Congestion	100
Infrastructure	100
Climate change	100

100 pct. means full implementation according to the quidelines by DTU/COWI (2016)

Emissions (g/passenger/km)

Ship		Bus	
CO ₂	200.1	CO ₂	17.9
10 x NOx	7.7	10 x NOx	1.1
100 x SOx	13.1	100 x SOx	0.1
100 x CO	15.9	100 x CO	2.0
100 x HC	15.9	100 x HC	0.1
100 x Particulates	8.6	100 x Particulates	0.1

External costs (EURO/passenger/1000 km)

Ship		Bus	
Emissions	14.39	Emissions	1.06
Noise	0.00	Noise	0.80
Accidents	0.00	Accidents	1.73
Congestion	0.00	Congestion	2.33
Infrastructure	0.00	Infrastructure	2.07
Climate change	2.13	Climate change	0.19
Total	16.5	Total	8.2

Emissions (g/passenger/km)

Ship		Car	
CO ₂	200.1	CO ₂	94.6
10 x NOx	7.7	10 x NOx	0.032
100 x SOx	13.1	100 x SOx	0.312
100 x CO	15.9	100 x CO	46.0
100 x HC	15.9	100 x HC	0.93
100 x Particulates	8.6	100 x Particulates	0.036

External costs (EURO/passenger/1000 km)

Ship		Car	
Emissions	14.39	Emissions	1.14
Noise	0.00	Noise	3.33
Accidents	0.00	Accidents	15.33
Congestion	0.00	Congestion	25.3
Infrastructure	0.00	Infrastructure	0.67
Climate change	2.13	Climate change	1.01
Total	16.5	Total	46.8

Example No. 5: 2000 passenger Ro-Ro passenger ship loaded 300 passengers (15 %) and 25 % trucks, NO busses and 25 % cars (very poor utilization). Average allocation procedure

Emissions (g/cargo lanemeter/km)

Ship		Truck	
CO ₂	417.4	CO ₂	64.4
10 x NOx	16.0	10 x NOx	3.52
100 x SOx	27.3	100 x SOx	0.04
100 x CO	33.3	100 x CO	1.00
100 x HC	33.3	100 x HC	0.15
100 x Particulates	17.9	100 x Particulates	0.20

External costs (EURO/lanemeter/1000 km)

Ship		Truck	
Emissions	30.01	Emissions	3.27
Noise	0.00	Noise	1.05
Accidents	0.00	Accidents	13.24
Congestion	0.00	Congestion	6.10
Infrastructure	0.00	Infrastructure	10.76
Climate change	4.45	Climate change	0.69
Total	34.5	Total	35.1

External costs (EURO/lanemeter/1000 km)

Ship		Truck	
CO ₂	4.45	CO ₂	0.69
NOx	11.28	NOx	2.48
SOx	7.64	SOx	0.01
со	0.00	со	0.00
HC	0.09	нс	0.00
Particulates	6.54	Particulates	0.09
Total	30.01	Total	3.27

10

Service allowance on ship power (%)

It is possible to scale the influence some of the external costs as follows:

	Scaling
Externality	(pct)
Noise	100
Accidents	100
Congestion	100
Infrastructure	100
Climate change	100

100 pct. means full implementation according to the quidelines by DTU/COWI (2016)

Emissions (g/passenger/km)

Ship		Bus	
CO ₂	399.7	CO ₂	17.9
10 x NOx	15.3	10 x NOx	1.1
100 x SOx	26.2	100 x SOx	0.1
100 x CO	31.9	100 x CO	2.0
100 x HC	31.9	100 x HC	0.1
100 x Particulates	17.1	100 x Particulates	0.1

External costs (EURO/passenger/1000 km)

Ship		Bus	
Emissions	28.74	Emissions	1.06
Noise	0.00	Noise	0.80
Accidents	0.00	Accidents	1.73
Congestion	0.00	Congestion	2.33
Infrastructure	0.00	Infrastructure	2.07
Climate change	4.26	Climate change	0.19
Total	33.0	Total	8.2

Emissions (g/passenger/km)

Ship		Car	
CO ₂	399.7	CO ₂	94.6
10 x NOx	15.3	10 x NOx	0.032
100 x SOx	26.2	100 x SOx	0.312
100 x CO	31.9	100 x CO	46.0
100 x HC	31.9	100 x HC	0.93
100 x Particulates	17.1	100 x Particulates	0.036

External costs (EURO/passenger/1000 km)

Ship		Car	
Emissions	28.74	Emissions	1.14
Noise	0.00	Noise	3.33
Accidents	0.00	Accidents	15.33
Congestion	0.00	Congestion	25.3
Infrastructure	0.00	Infrastructure	0.67
Climate change	4.26	Climate change	1.01
Total	33.0	Total	46.8

Appendix D Calculation examples of emissions and external costs with SHIP-DESMO for a Ro Ro cargo ship

Emissions (g/lanemeter/km)

Ship		Truck	
CO ₂	90.6	CO ₂	76.4
10 x NOx	14.3	10 x NOx	4.17
100 x SOx	5.93	100 x SOx	0.05
100 x CO	7.44	100 x CO	1.19
100 x HC	7.44	100 x HC	0.18
100 x Particulates	4.00	100 x Particulates	0.24

External costs (EURO/lanemeter/1000 km)

Ship		Truck	
Emissions	14.20	Emissions	3.88
Noise	0	Noise	1.05
Accidents	0	Accidents	13.24
Congestion	0	Congestion	6.10
Infrastructure	0	Infrastructure	10.76
Climate change	0.97	Climate change	0.81
Total	15.2	Total	35.8

External costs (EURO/lanemeter/1000 km)

Ship		Truck	
CO ₂	0.97	CO ₂	0.81
NOx	10.09	NOx	2.95
SOx	1.66	SOx	0.013
CO	0.00009	CO	0.00002
HC	0.020	HC	0.00049
Particulates	1.46	Particulates	0.10
Total	14.20	Total	3.88

10

Service allowance on ship power (%)

Emissions (g/t cargo on truck/km)

Ship		Truck	
CO ₂	45.2	CO ₂	38.2
10 x NOx	7.13	10 x NOx	2.085
100 x SOx	2.96	100 x SOx	0.024
100 x CO	3.71	100 x CO	0.596
100 x HC	3.71	100 x HC	0.089
100 x Particulates	2.00	100 x Particulates	0.119

External costs (EURO/t cargo on truck/1000 km)

Ship		Truck	
Emissions	7.10	Emissions	1.94
Noise	0	Noise	0.52
Accidents	0	Accidents	6.62
Congestion	0	Congestion	3.05
Infrastructure	0	Infrastructure	5.38
Climate change	0.48	Climate change	0.41
Total	7.58	Total	17.9

External costs (EURO/t cargo on truck/1000 km)

Ship		Truck	
CO ₂	0.48	CO ₂	0.41
NOx	5.05	NOx	1.47
SOx	0.83	SOx	0.007
CO	0.00005	CO	0.00001
HC	0.010	HC	0.0002
Particulates	0.73	Particulates	0.05
Total	7.10	Total	1.94

Emissions (g/lanemeter/km)

Ship		Truck	
CO ₂	108.5	CO ₂	76.4
10 x NOx	17.1	10 x NOx	4.17
100 x SOx	7.11	100 x SOx	0.05
100 x CO	8.90	100 x CO	1.19
100 x HC	8.90	100 x HC	0.18
100 x Particulates	4.79	100 x Particulates	0.24

External costs (EURO/lanemeter/1000 km)

Ship		Truck	
Emissions	17.00	Emissions	3.88
Noise	0	Noise	1.05
Accidents	0	Accidents	13.24
Congestion	0	Congestion	6.10
Infrastructure	0	Infrastructure	10.76
Climate change	1.16	Climate change	0.81
Total	18.2	Total	35.8

External costs (EURO/lanemeter/1000 km)

Ship		Truck	
CO ₂	1.16	CO ₂	0.81
NOx	12.08	NOx	2.95
SOx	1.99	SOx	0.013
CO	0.00011	CO	0.00002
HC	0.024	HC	0.00049
Particulates	1.75	Particulates	0.10
Total	17.00	Total	3.88

10

Service allowance on ship power (%)

Emissions (g/t cargo on truck/km)

Ship		Truck	
CO ₂	51.7	CO ₂	38.2
10 x NOx	8.14	10 x NOx	2.085
100 x SOx	3.39	100 x SOx	0.024
100 x CO	4.24	100 x CO	0.596
100 x HC	4.24	100 x HC	0.089
100 x Particulates	2.28	100 x Particulates	0.119

External costs (EURO/t cargo on truck/1000 km)

Ship		Truck	
Emissions	8.50	Emissions	1.94
Noise	0	Noise	0.52
Accidents	0	Accidents	6.62
Congestion	0	Congestion	3.05
Infrastructure	0	Infrastructure	5.38
Climate change	0.58	Climate change	0.41
Total	9.08	Total	17.9

External costs (EURO/t cargo on truck/1000 km)

Ship		Truck	
CO ₂	0.58	CO ₂	0.41
NOx	6.04	NOx	1.47
SOx	0.99	SOx	0.007
СО	0.00006	СО	0.00001
HC	0.012	HC	0.0002
Particulates	0.88	Particulates	0.05
Total	8.50	Total	1.94